首页 | 本学科首页   官方微博 | 高级检索  
   检索      


UTP inhibits Na+ absorption in wild-type and Delta F508 CFTR-expressing human bronchial epithelia
Authors:Devor  Daniel C; Pilewski  Joseph M
Abstract:Ca2+-mediated agonists,including UTP, are being developed for therapeutic use in cysticfibrosis (CF) based on their ability to modulate alternativeCl- conductances. As CF isalso characterized by hyperabsorption ofNa+, we determined the effect ofmucosal UTP on transepithelial Na+transport in primary cultures of human bronchial epithelia (HBE). Insymmetrical NaCl, UTP induced an initial increase in short-circuit current (Isc)followed by a sustained inhibition. To differentiate between effects onNa+ absorption andCl- secretion,Isc was measuredin the absence of mucosal and serosal Cl-(INa). Again,mucosal UTP induced an initial increase and then a sustained decreasethat reduced amiloride-sensitiveINa by 73%. TheCa2+-dependent agonists histamine,bradykinin, serosal UTP, and thapsigargin similarly induced sustainedinhibition (62-84%) ofINa. Mucosal UTPinduced similar sustained inhibition (half-maximal inhibitory concentration 296 nM) ofINa in primarycultures of human CF airway homozygous for the Delta F508 mutation.BAPTA-AM blunted UTP-dependent inhibition ofINa, butinhibitors of protein kinase C (PKC) and phospholipaseA2 had no effect. Indeed, directactivation of PKC by phorbol 12-myristate 13-acetate failed to inhibitNa+ absorption. Apyrase, a tri-and diphosphatase, did not reverse inhibitory effects of UTP onINa, suggesting along-term inhibitory effect of UTP that is independent of receptoroccupancy. After establishment of a mucosa-to-serosaK+ concentration gradient andpermeabilization of the mucosal membrane with nystatin, mucosal UTPinduced an initial increase in K+current followed by a sustained inhibition. We conclude that increasingcellular Ca2+ induces a long-terminhibition of transepithelial Na+transport across normal and CF HBE at least partly due todownregulation of a basolateral membraneK+ conductance. Thus UTP may havea dual therapeutic effect in CF airway:1) stimulation of aCl- secretory response and2) inhibition ofNa+ transport.
Keywords:
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号