首页 | 本学科首页   官方微博 | 高级检索  
     


Automated identification of binding sites for phosphorylated ligands in protein structures
Authors:Ghersi Dario  Sanchez Roberto
Affiliation:Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York.
Abstract:Phosphorylation is a crucial step in many cellular processes, ranging from metabolic reactions involved in energy transformation to signaling cascades. In many instances, protein domains specifically recognize the phosphogroup. Knowledge of the binding site provides insights into the interaction, and it can also be exploited for therapeutic purposes. Previous studies have shown that proteins interacting with phosphogroups are highly heterogeneous, and no single property can be used to reliably identify the binding site. Here we present an energy‐based computational procedure that exploits the protein three‐dimensional structure to identify binding sites involved in the recognition of phosphogroups. The procedure is validated on three datasets containing more than 200 proteins binding to ATP, phosphopeptides, and phosphosugars. A comparison against other three generic binding site identification approaches shows higher accuracy values for our method, with a correct identification rate in the 80–90% range for the top three predicted sites. Addition of conservation information further improves the performance. The method presented here can be used as a first step in functional annotation or to guide mutagenesis experiments and further studies such as molecular docking. Proteins 2012;. © 2012 Wiley Periodicals, Inc.
Keywords:binding site  ligand  function  structure  docking  pocket  identification
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号