首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti
Authors:Lumjuan Nongkran  McCarroll Lynn  Prapanthadara La-aied  Hemingway Janet  Ranson Hilary
Institution:Vector Research Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
Abstract:Glutathione transferases (GSTs) play a central role in the detoxification of xenobiotics such as insecticides and elevated GST expression is an important mechanism of insecticide resistance. In the mosquito, Anopheles gambiae, increased expression of an Epsilon class GST, GSTE2, confers resistance to DDT. We have identified eight GST genes in the dengue vector, Aedes aegypti. Four of these belong to the insect specific GST classes Delta and Epsilon and three are from the more ubiquitously distributed Theta and Sigma classes. The expression levels of the two Epsilon genes, a Theta GST and a previously identified Ae. aegypti GST Grant and Hammock, 1992. Molecular and General Genetics 234, 169-176] were established for an insecticide susceptible and a resistant strain. We show that the putative ortholog of GSTe2 in Ae. aegypti (AaGSTe2) is over expressed in mosquitoes that are resistant to the insecticides DDT and permethrin. Characterisation of recombinant AaGSTE2-2 confirmed the role of this enzyme in DDT metabolism. In addition, unlike its Anopheles ortholog, AaGSTE2-2 also exhibited glutathione peroxidase activity.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号