首页 | 本学科首页   官方微博 | 高级检索  
     


ALTERNATION OF GENERATIONS IN LAND PLANTS: NEW PHYLOGENETIC AND PALAEOBOTANICAL EVIDENCE
Authors:ByPAUL  KENRICK
Affiliation:Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, S;-10405 Stockholm, Sweden
Abstract:Current ideas on the evolution of alternation of generations in land plants are reviewed in the context of important recent advances in plant systematics and the discovery of remarkable new palaeobotanical evidence on early embryophyte life cycles. An overview of relationships in major groups of green plants is presented together with a brief review of the early fossil record as a prelude to discussing hypotheses of life cycle evolution. Recent discoveries of life cycles in the early fossil record are described and assessed. The newly discovered gametophyte and sporophyte associations are based on exceptionally well-preserved material from the Rhynie Chert, Scotland (Middle Devonian: 380–408 Myr) and compression fossils from other Devonian localities. These data document diplobiontic life cycles in plants at the ‘protracheophyte’ and early tracheophyte level of organization. Furthermore, the early fossils have a more or less isomorphic alternation of generations, a striking departure from life cycles in extant embryophytes. This unexpected similarity between gametophyte and sporophyte calls for a cautious approach in identifying ploidy level in early groups. Viewed in a systematic context, the neontological and palaeontological data contribute towards the formulation of a coherent hypothesis of life cycle evolution in major, early embryophyte groups. Evidence from extant groups strongly supports a single direct origin of the diplobiontic life cycles of land plants from haploid, haplobiontic life cycles in ancestral ‘charophycean algae’. The interest of the new palaeobotanical data lies in its relevance to life cycle evolution at the restricted level of vascular plants rather than at the more general level of embryophytes (vascular plants plus ‘bryophytes’). The occurrence of morphologically complex, axial gametophytes in early vascular plants is consistent with the moss sister-group proposed in some cladistic analyses. Similarities of moss gametophytes to fossils in the vascular plant stem-group are discussed, and it is argued that the late appearance of mosses in the macrofossil record may be due to the problem of recognizing stem-group taxa. The new palaeobotanical evidence conflicts with previous hypotheses based on extant groups that interpret morphological simplicity as the plesiomorphic condition in the gametophytes of vascular plants. These new data indicate that a significant elaboration of both gametophyte and sporophyte occurred early in the tracheophyte lineage, and that the gametophytes of extant ‘pteridophytes’ are highly reduced compared to those of some of the earliest ‘protracheophytes’. Vestiges of this early morphological complexity may remain in the gametophytes of some extant groups such as Lycopodiaceae.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号