首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of iron-hexacyanide binding on the determination of redox potentials of cytochromes and copper proteins
Authors:GW Pettigrew  FA Leitch  GR Moore
Institution:

a Department of Biochemistry (Veterinary Unit), Royal Dick School of Veterinary Studies, University of Edinburgh, Edinburgh EH9 1QH, U.K.

b Laboratory of Inorganic Chemistry, University of Oxford, Oxford OX1 3QR, U.K.

Abstract:The midpoint redox potentials of Pseudomonas aeruginosa cytochrome c-551 and Rhodopseudomonas viridis cytochrome c2 were measured as a function of pH in the presence of Euglena cytochrome c-558 and the results compared with those obtained in the presence of ferro-ferricyanide. The pattern of pH dependence observed for the two bacterial cytochromes was the same whether it was measured by equilibrium with another redox protein or with the inorganic redox couple. Thus, the pH dependence of redox potential is not a consequence of pH-dependent ligand binding. The midpoint potential of Ps. aeruginosa azurin was measured as a function of pH using both ferro-ferricyanide mixtures and redox equilibrium with horse cytochrome c or Rhodopseudomonas capsulata cytochrome c2. In this case also the pattern of pH dependence obtained did not vary with the redox system used and it closely resembled that of Ps. aeruginosa cytochrome c-551. This is consistent with the observation that the equilibrium between cytochrome c-551 and azurin is relatively independent of pH. An equation was derived which described pH-dependent ligand binding and which can produce theoretical curves to fit the experimental pH dependence of redox potential for both cytochrome and azurin. However, the pronounced effect on such curves produced by varying the ligand association constants, and the insensitivity of the experimental data to changes in ionic strength, suggest that ligand binding effects do not account for the pH dependence of redox potential.
Keywords:Cytochrome  Copper protein  Redox potential  Azurin  Ligand binding  Iron hexacyanide
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号