首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA-induced endocytosis upon local microinjection to giant unilamellar cationic vesicles
Authors:M I Angelova  Nadejda Hristova  Iana Tsoneva
Institution:(1) Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. #21, BG-1113 Sofia, Bulgaria e-mail: mig@obzor.bio21.bas.bg, BG
Abstract:We suggest a novel approach for direct optical microscopy observation of DNA interaction with the bilayers of giant cationic liposomes. Giant unilamellar vesicles, about 100 μm in diameter, made of phosphatidylcholines and up to 33 mol% of the natural bioactive cationic amphiphile sphingosine, were obtained by electroformation. “Short” DNAs (oligonucleotide 21b and calf thymus 250 bp) were locally injected by micropipette to a part of the giant unilamellar vesicle (GUV) membrane. DNAs were injected native, as well as marked with a fluorescent dye. The resulting membrane topology transformations were monitored in phase contrast, while DNA distribution was followed in fluorescence. We observed DNA-induced endocytosis due to the DNA/lipid membrane local interactions and complex formation. A characteristic minimum concentration (C endo) of d-erythro-sphingosine (Sph+) in the GUV membrane was necessary for the endocytic phenomenon to occur. Below C endo, only lateral adhesions between neighboring vesicles were observed upon DNA local addition. C endo depends on the type of zwitterionic (phosphocholine) lipid used, being about 10 mol% for DPhPC/Sph+ GUVs and about 20 mol% for SOPC/Sph+ or eggPC/Sph+ GUVs. The characteristic sizes and shapes of the resulting endosomes depend on the kind of DNA, and initial GUV membrane tension. When the fluorescent DNA marker dye was injected after the DNA/lipid local interaction and complex formation, no fluorescence was detected. This observation could be explained if one assumes that the DNA is protected by lipids in the DNA/lipid complex, thereby inaccessible for the dye molecules. We suggest a possible mechanism for DNA/lipid membrane interaction involving DNA encapsulation within an inverted micelle included in the lipid membrane. Our model observations could help in understanding events associated with the interaction of DNA with biological membranes, as well as cationic liposomes/DNA complex formation in gene transfer processes. Received: 18 April 1998 / Revised version: 6 August 1998 / Accepted: 7 August 1998
Keywords:DNA interactions  Cationic giant unilamellar vesicle  Microinjection  Sphingosine  Endocytosis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号