首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Last-Century Increases in Intrinsic Water-Use Efficiency of Grassland Communities Have Occurred over a Wide Range of Vegetation Composition,Nutrient Inputs,and Soil pH
Authors:Iris H K?hler  Andy J Macdonald  Hans Schnyder
Institution:Lehrstuhl für Grünlandlehre, Technische Universität München, 85350 Freising, Germany (I.H.K., H.S.); and;Sustainable Soils and Grassland Systems Department, Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom (A.J.M.)
Abstract:Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol−1). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century.The intrinsic water-use efficiency (Wi) of plants is controlled by photosynthetic carbon assimilation and stomatal conductance via the leaf-level coupling of CO2 and water fluxes. A general, but variable, increase of Wi under rising atmospheric CO2 has been observed in long-term studies (Peñuelas et al., 2011; Franks et al., 2013; Saurer et al., 2014), but little is known about other environmental or ecosystem factors, which may interact with the effect of increasing CO2 on Wi. An improved understanding of putative interactive mechanisms is important because changes in Wi may have significant effects on the global terrestrial carbon and water cycles (Gedney et al., 2006; Betts et al., 2007). This study explores the interactive effects of the increase in atmospheric CO2 (observed over the last century), nutrient loading, and soil pH together with other related effects on plant species richness and functional group composition on the coupling of plant CO2 and water fluxes in a seminatural grassland in southeastern England.Wi is a leaf-level efficiency that has also been termed potential water-use efficiency or physiological water-use efficiency, as it excludes the direct influence of vapor pressure deficit (VPD), a parameter determined by environmental conditions, on leaf-level water-use efficiency (Farquhar et al., 1989; Franks et al., 2013). Wi reports the relationship between net CO2 assimilation rate (An) and stomatal conductance for water vapor (gH2O):(1)According to the first law of Fick, An can be given as the product of the stomatal conductance for CO2 (gCO2) and the concentration gradient between the atmosphere (ca) and the leaf internal gas space (ci): An= gCO2 (caci). Using gCO2 (caci) instead of An in Equation 1, replacement of gH2O/gCO2 by the numerical value of gH2O/gCO2 (1.6) and rearrangement yields the following alternative expression of Wi:(2)Equation 2 reveals that past changes of Wi must have been controlled by two parameters: the change of ca and the concurrent change of 1 – ci/ca, the relative gradient for CO2 diffusion into the leaf (Franks et al., 2013). A change in the relative gradient is determined by the changes in An relative to gH2O, as leaves respond to changing ca and other environmental factors. In particular, Equation 2 shows that any variation in the climate change response of Wi is determined by the ci/ca response, if the comparison is made for vegetation at the same location and in the same period of time.Studies with C3 vegetation, including trees/forests and C3 grasslands, have revealed a general increase of Wi in the last century (Bert et al., 1997; Duquesnay et al., 1998; Feng, 1999; Arneth et al., 2002; Saurer et al., 2004; Barbosa et al., 2010; Köhler et al., 2010; Andreu-Hayles et al., 2011). In many cases, ci/ca, estimated by 13C discrimination (Farquhar et al., 1989), varied relatively little. Indeed, it has been suggested, based on theoretical grounds and empirical evidence from studies over geological/evolutionary to short time scales, that adaptive feedback responses will tend to maintain ci/ca approximately constant (Ehleringer and Cerling, 1995; Franks et al., 2013), as plants optimize carbon gain with respect to water loss (Cowan and Farquhar, 1977). Yet, ci/ca-dependent variation in the Wi response to climate change has also been noted (Peñuelas et al., 2011; Köhler et al., 2012) over the last century, indicating that additional factors, perhaps including other global change drivers, can modify the Wi response over this time scale, at least transiently. A meta-analysis by Peñuelas et al. (2011) reports ci/ca-dependent increases of Wi for different forests between 6% and 36% from the early 1960s to 2000s. A recent study by Saurer et al. (2014) on European forest trees found increases in Wi ranging from 1% to 53% during the last century. The strongest increase of Wi was recorded in regions where summer soil-water availability decreased in the last century. For different grassland communities, the ci/ca-dependent increases of Wi varied between 13% and 28% at one site (Köhler et al., 2012) from 1915 to 2009. Evidently, such variation can have important repercussions for the coupling of terrestrial CO2 and water fluxes. Yet, little is known about the mechanism(s) underlying the variation.At the Park Grass Experiment (PGE) at Rothamsted, England, Köhler et al. (2012) observed a nitrogen supply-dependent enhancement of the Wi response on plots receiving nitrate fertilizer and maintained at a near-neutral soil pH by liming. However, the actual relationship between nitrogen supply and Wi response did not hold when the unlimed control (soil pH approximately 5.2) was included in the comparison. Remarkably, however, there was a significant positive relationship between the grass content of the community and the Wi response of the experimental plots in the investigation. These results suggested that the effect of nutrient supply on the Wi response of the grassland communities was indirect, perhaps working via effects on soil pH and/or vegetation composition (plant species richness or functional group composition).The PGE provides a unique opportunity to study century-scale variation in the ci/ca-dependent variation of Wi for a wide range of diverse grassland communities. Much of the extant ecosystem-scale variability of plant species richness and soil pH in temperate grasslands of Europe (Ceulemans et al., 2014) is included in the range of plot-scale plant species richness and soil pH at the PGE (which is reported in this investigation). The different long-term applications of fertilizer and lime over the past century have resulted in substantial changes in soil pH, species richness, and grass content on the experimental plots, but in most cases, within-plot changes over the study period considered here (1915–2009) were comparatively small (Crawley et al., 2005; Silvertown et al., 2006). All experimental plots are located at the same site and are exposed to the same weather conditions. Consequently, trends in climate as a direct driver for differences in Wi between plots can be ruled out.Here, we explore putative mechanisms underlying eventual ci/ca-dependent variation of Wi during the last century at the PGE by, first, quantifying the sustained effect of a wide range of contrasting fertilizer treatments (n = 16) on the change of Wi during the last century and, second, analyzing the relationships between the observed Wi response of treatments and the respective nutrient status, soil pH, plant species richness, and plant functional group composition of the grassland communities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号