首页 | 本学科首页   官方微博 | 高级检索  
     


The functional morphology and attachment mechanism of pandarid adhesion pads (Crustacea: Copepoda: Pandaridae)
Authors:Abigail L. Ingram and Andrew R. Parker
Affiliation:

Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS

Abstract:The attachment mechanism of pandarid adhesion pads is described from observations of their externally ridged structure and internal construction in three species; Pandarus bicolor Leach, 1816, Dinemoura latifolia (Steenstrup and Lutken, 1861) and Echthrogaleus coleoptratus (Guerin-Meneville, 1837). The host's external skin morphology was also examined, since parasite attachment mechanism and host surface can be considered as components of a single system.

The results emphasise the importance of the physical nature of the pad's surface. This is inferred from the compliance of the cuticle and subsurface structure, and the presence of cuticular ridging. The pads probably prevent pandarids from being dislodged by hydrodynamic drag, by increasing overall adhesion. It is proposed that this is achieved in different ways, by two types of adhesion pad identified here, distinguishable by their external structure and location. Type I pads are suggested to remove interfacial water and increase surface contact by one of two contrasting methods. The ridges may act as tyre treads, by channelling water from the contact surface. Alternatively, the channels between ridges may be hydrophobic and behave as dewetting structures, preventing water from entering in the same way that troughs between surface nodules function to produce superhydrophobicity on lotus leaves. Type I adhesion pads are also suggested to aid attachment by hindering the process of peeling, by which they are thought to be removed by hydrodynamic drag. Type II pads are more likely to function as one-way frictional attachments. Both types of pad appear to be attached passively, since they lack muscles inserting into them. The adhesive mechanism of each, which functions most effectively on hard surfaces, may explain why pads are absent or reduced on pandarids which parasitise the softer, unscaled surfaces of hosts.

Pandarids predominantly parasitise the skin and fins of fast-swimming sharks. This may be because the scales are characteristically smaller in these species and are more easily encircled by the primary attachment appendages, the maxillipeds.

This is thought to be the first published report to reveal frictional attachment structures from the Crustacea, which have convergently evolved in many terrestrial Arthropoda.

Keywords:Microstructures   Passive attachment   Friction
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号