首页 | 本学科首页   官方微博 | 高级检索  
     


Light affects in vitro organogenesis of Linum usitatissimum L. and its cyanogenic potential
Authors:Irena Siegień  Aneta Adamczuk  Katarzyna Wróblewska
Affiliation:1. Institute of Biology, The University of Bialystok, ?wierkowa 20b, 15-950, Bialystok, Poland
Abstract:The relationships between organogenesis of oil flax (Linum usitatissimum L., cv. ‘Szafir’) in vitro, cyanogenic potential (HCN-p) of these tissues and light were investigated. Shoot multiplication obtained on Murashige and Skoog medium containing 0.05 mg L?1 2,4-dichloro-phenoxyacetic acid and 1 mg L?1 6-benzyladenine (BA), was about twice higher in light-grown cultures than those in darkness. Light-grown explants showed also higher rate of roots regeneration (in medium containing 1 mg L?1 α-naphtaleneacetic acid and 0.05 mg L-1 BA) than dark-grown ones. The cyanogenic potential (expressed both as linamarin and lotaustralin content and linamarase activity) of flax cultured in vitro was tissue-specific and generally was higher under light conditions than in darkness. The highest concentration of linamarin and lotaustralin was detected in light-regenerated shoots, and its amount was twice as high as in roots, and about threefold higher than in callus tissue. The activities of linamarase and β-cyanoalanine synthase in light-regenerated organs were also higher than those in darkness. Thus, higher frequency of regeneration of light-grown cultures than dark-grown ones seems to be correlated with higher HCN-p of these tissues. We suggest that free HCN, released from cyanoglucosides potentially at higher level under light conditions, may be involved in some organogenetic processes which improve regeneration efficiency.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号