首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydrogen peroxide is involved in the regulation of rice (Oryza sativa L.) tolerance to salt stress
Authors:Xiaomin Wang  Chen Hou  Jie Liu  Wenliang He  Wenbin Nan  Huiling Gong  Yurong Bi
Institution:1. Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
Abstract:In the present study, we investigated the salt tolerance mechanism of two rice cultivars (Zhenghan-2 and Yujing-6), which show different tolerance to drought and disease. NaCl induced higher extent of lipid peroxide and ion leakage in Yujing-6 roots than those in Zhenghan-2 roots. H2O2 accumulation in Zhenghan-2 roots was lower than that in Yujing-6 roots under salt stress. Comparatively, NaCl treatment did not increase O2 ? contents in both rice roots, however, O2 ? level in Yujing-6 roots was higher than that in Zhenghan-2 roots under both control and salt stress conditions. Ascorbate peroxidases (APX) activity increased more significantly in Zhenghan-2 roots than that in Yujing-6 roots. The activity of catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glucose-6-phosphate dehydrogenase (G6PDH) was similarly enhanced in both rice roots under salt stress; however, they showed higher levels in Zhenghan-2 roots than in Yujing-6 roots. Exogenous H2O2 could enhance APX, CAT, POD, SOD and G6PDH activities in a concentration-dependent manner in both rice roots. Diphenylene iodonium (DPI), a plasma membrane (PM) NADPH oxidase inhibitor, which counteracted the NaCl-induced H2O2 accumulation, markedly decreased the activity of above enzymes. Moreover, ion leakage increased dramatically in Zhenghan-2 roots and reached to the similar level of Yujing-6 roots under NaCl+DPI treatment. Taken together, H2O2, which is mainly generated from PM NADPH oxidase, is involved in Zhenghan-2 rice tolerance to salt stress by enhancing the cellular antioxidant level.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号