首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of hypoxia on permeability of pulmonary endothelium of canine visceral pleura
Authors:Kinasewitz, G. T.   Groome, L. J.   Marshall, R. P.   Leslie, W. K.   Diana, J. N.
Abstract:To determine if hypoxia increases the permeability of the pulmonary capillaries of the visceral pleura, water and protein movement across visceral pleura of isolated blood-perfused lungs ventilated with 20% O2-5% CO2 or 0% O2-5% CO2 was analyzed in terms of a two-compartment model of fluid exchange. Lungs from mongrel dogs were enclosed in a water-impermeable membrane, thereby creating an artificial visceral pleural space (VPS); fluid flux was determined as the filtration or reabsorption of water and protein in the VPS. Hypoxic vasoconstriction was prevented by adding verapamil to the perfusate. Hydrostatic pressures were continuously monitored and samples of perfusate and pleural fluid were obtained for protein determinations. Pulmonary capillary pressure was varied between 5 and 20 Torr by changing venous pressure while the protein concentration gradient was varied from 0.5 to 6.6 g/dl by introducing different solutions of plasma mixed with saline into the VPS. The hydraulic conductivity (Lp) increased from 4.25 +/- 0.74 to 9.18 +/- 0.67 X 10(-7) ml X s-1 X mmHg-1 X cm-2 and the diffusional permeability (Pd) of protein increased from 1.29 +/- 0.28 to 4.06 +/- 0.44 X 10(-6) cm/s under hypoxic conditions (P less than 0.05). Inhibition of xanthine oxidase by the addition of allopurinol (10 mg/kg body wt) to the perfusate prevented the increase in Lp and Pd observed under hypoxic conditions. We conclude that free radicals generated via xanthine oxidase may be responsible for the increased permeability observed during severe hypoxia.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号