Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization |
| |
Authors: | Hayasaki M Morikawa T Tarumoto I |
| |
Affiliation: | Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Japan. |
| |
Abstract: | Wild and cultivated hexaploid oats share the same genomes (AACCDD) and display a considerable level of interspecific variation in both plant and chromosome morphology. The GISH was utilized to detect the interspecific genomic compositions in four hexaploid and two tetraploid oats using total genomic DNA of Avena eriantha (a C-genome diploid) as probe. Intergenomic translocations between A/D and C-genome chromosomes were frequently observed in hexaploid and tetraploid species. In the hexaploid, two pairs of A/D genome segments on C-genome chromosome (A/D-C) translocation and four to six pairs of C-genome segments on A/D genome chromosome (C-A/D) translocation were clearly identified whilst the number of A/D-C translocations was constant among species. In the tetraploid A. maroccana (AACC), a pair of A-C and four pairs of C-A translocations were observed. Moreover, the A/D translocation segments on chromosome 5C was detected only in A. byzantina and A. maroccana, whilst A/D-C translocations were observed on the 1C and 7C of A. sativa, A. fatua and A. sterilis. A. byzantina did however also carry the 1C rearrangement. This result shows that A. byzantina has retained a similar genomic constitution to the tetraploid ancestor of hexaploid oats, A. maroccana. Three pairs of A-C translocations were detected only in A. murphyi (AACC), and two pairs of those were the 1C and 7C as well as the three hexaploid species except A. byzantina. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|