首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rabbit brain purine nucleoside phosphorylase. Physical and chemical properties. Inhibition studies with aminopterin, folic acid and structurally related compounds.
Authors:A S Lewis
Institution:1. Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461 USA;2. The Department of Natural Science, Medgar Evers College, City University of New York, 1150 Carroll Street, Brooklyn, New York 11225 USA
Abstract:Rabbit brain purine nucleoside phosphorylase used in this study was purified 6000-fold to apparent homogeneity and a specific activity or 50 μmol min?1 mg ?1 protein. A molecular weight of 70.000 daltons was determined for the native enzyme by gel filtration on Sephadex. Electrophoresis on polyacrylamide gel, in presence of sodium dodecyl sulfate, gave a subunit molecular weight of 34,500 daltons, suggesting that the enzyme is dimeric with, probably, identical subunits. The relationship of the structure of certain biologically active substances to their inhibitory action on the enzyme was examined. Folic acid and the compound d,l-6-methyl 5,6,7,8-tetrahydropterine, with similar substituents on their primary ring structure, were competitive inhibitors of the enzyme. The inhibition constants calculated were 3.37 × 10?5M for folic acid and 3.80 × 10?5m for d,l-6-methyl 5,6,7,8-tetrahydropterine. Aminopterin and the purine analog 8-aza-2,6-diaminopurine, with similar substituents on their primary ring structure, were noncompetitive inhibitors of the enzyme. Their respective inhibition constants were 1.50 × 10?4 and 1.95 × 10?4m. Erythro-9-(2-hydroxy-3-nonyl) adenine, an adenosine deaminase inhibitor, was also examined for inhibitory potency with mammalian purine nucleoside phosphorylase, and was observed to be a competitive inhibitor of this enzyme, with an inhibition constant of 1.90 × 10?4m. The Michaelis constant for the substrate guanosine was near 6.0 × 10?5m. Physical probe of the nature of the functional groups which participate in enzymic catalysis implicated both histidine and cysteine as the essential catalytic species. Photooxidation studies suggested a pH-dependent sensitivity of an essential catalytic group, and its probable location at the active site.
Keywords:Address correspondence to the City University address  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号