首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure modeling and functional analysis of recombinant dextransucrase from Weissella confusa Cab3 expressed in Lactococcus lactis
Authors:Shraddha Shukla  Anil Kumar Verma  Ilkka Kajala  Antti Nyyssolä  Rwivoo Baruah  Kati Katina
Institution:1. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India;2. VTT Technical Research Centre of Finland, Espoo, Finland;3. Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
Abstract:The dextransucrase gene from Weissella confusa Cab3, having an open reading frame of 4.2?kb coding for 1,402?amino acids, was amplified, cloned, and expressed in Lactococcus lactis. The recombinant dextransucrase, WcCab3-rDSR was expressed as extracellular enzyme in M17 medium with a specific activity of 1.5?U/mg which after purification by PEG-400 fractionation gave 6.1?U/mg resulting in 4-fold purification. WcCab3-rDSR was expressed as soluble and homogeneous protein of molecular mass, approximately, 180?kDa as analyzed by SDS-PAGE. It displayed maximum enzyme activity at 35°C at pH 5.0 in 50?mM sodium acetate buffer. WcCab3-rDSR gave Km of 6.2?mM and Vm of 6.3?µmol/min/mg. The characterization of dextran synthesized by WcCab3-rDSR by Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the structural similarities with the dextran produced by the native dextransucrase. The modeled structure of WcCab3-rDSR using the crystal structures of dextransucrase from Lactobacillus reuteri (protein data bank, PDB id: 3HZ3) and Streptococcus mutans (PDB id: 3AIB) as templates depicted the presence of different domains such as A, B, C, IV, and V. The domains A and B are circularly permuted in nature having (β/α)8 triose phosphate isomerase-barrel fold making the catalytic core of WcCab3-rDSR. The structure superposition and multiple sequence alignment analyses of WcCab3-rDSR with available structures of enzymes from family 70 GH suggested that the amino acid residue Asp510 acts as a nucleophile, Glu548 acts as a catalytic acid/base, whereas Asp621 acts as a transition-state stabilizer and these residues are found to be conserved within the family.
Keywords:Dextran  dextransucrase  homology modeling  Lactococcus lactis  NMR  Weissella confuse
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号