首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glutamate release and synapsin-I phosphorylation induced by P2X7 receptors activation in cerebellar granule neurons
Authors:León David  Sánchez-Nogueiro Jesús  Marín-García Patricia  Miras-Portugal M A Teresa
Institution:Department of Biochemistry, Veterinary Faculty, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
Abstract:The present work reports that activation of P2X7 receptor induces synaptic vesicle release in granule neurons and phosphorylation of synapsin-I by calcium-calmodulin-dependent protein kinase II (CaMKII), which in turn modulates secretory event. ATP, in absence of magnesium, induced a concentration-dependent glutamate release with an EC50 value of 1.95 microM. The involvement of P2X7 receptor was suggested when maximal secretory response was significantly reduced by the selective P2X7 antagonist Brilliant Blue G (BBG; 100 nM) and abolished by removing extracellular Ca2+. The involvement of P2X7 receptor on synaptic vesicle release was confirmed by measuring the release of FM 1-43 dye. In this case, pharmacological activation of P2X7 was achieved with the more selective agonist 2'-3'-o-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP; 100 microM) showing a significant FM 1-43 release that was blocked by BBG (100 nM), by Zn2+ ions (100 microM), both P2X7 blockers, but not by suramin (100 microM), antagonist of P2X1, P2X2, P2X3 and P2X5. In addition, BzATP, through P2X7 receptor activation, significantly increased the phosphorylation of synapsin-I, the main presynaptic target of CaMKII. Both effects mediated by BzATP were inhibited by the CaMKII inhibitors KN-62 (10 microM) and KN-93 (10 microM). These results suggest, therefore, that Ca2+ entrance mediated by P2X7 receptor induces glutamate release and in parallel synapsin-I phosphorylation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号