首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extent and distribution of tibial osteochondral disruption during simulated landing impact with axial tibial rotation restraint
Authors:CH Yeow  PVS Lee  JCH Goh
Institution:1. Musculo-skeletal and Quantitative Imaging Research (MQIR), Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA;2. Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA;3. Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, USA
Abstract:Post-traumatic knee osteochondral injuries are often coupled with anterior cruciate ligament (ACL) injury mechanisms during landing. However, it is not well understood whether restraining axial tibial rotation during landing would influence the extent and distribution of osteochondral disruption. Using ski landing as an example, this study subjected knee specimens to simulated landing impact without and with axial tibial rotation restraint, and investigated the extent and distribution of osteochondral disruption at the tibial plateau. Twenty-one porcine knee specimens were randomly divided into three test conditions, namely: (1) control, (2) impact only (I), and 3) impact with restraint (IR). Simulated landing impact was applied to the specimens based on a single 10 Hz haversine. Osteochondral explants were obtained from anterior, middle and posterior regions of medial and lateral tibial compartments. The extent of cartilage and trabecular disruption in these explants was examined based on histology, SEM and microCT. Only specimens in unrestrained condition incurred ACL failure upon impact. Restraining axial tibial rotation during simulated impact generally inflicted cartilage damage and deformation, and further caused trabecular disruption. Axial tibial rotation restraint did not necessarily restrict anterior tibial translation, as indicated by the presence of relative posterior femoral translation and osteochondral disruption at anterior–posterior tibial regions. While the results obtained in the current study may not be completely translatable to human models, there is likelihood that restraining axial tibial rotation during landing may help to prevent ACL failure, but will also induce osteochondral disruption in most tibial regions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号