首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Towards mimicking natural protein channels with aligned carbon nanotube membranes for active drug delivery
Authors:Mainak Majumder  Audra Stinchcomb  Bruce J Hinds
Institution:1. Dept. of Chemical and Materials Engineering, University of Kentucky, Lexington KY 40502-0046, United States;2. College of Pharmacy, University of Kentucky, Lexington KY 40502-0046, United States
Abstract:AimsCarbon nanotube (CNT) membranes offer an exciting opportunity to mimic natural protein channels due to 1) a mechanism of dramatically enhanced fluid flow 2) ability to place ‘gatekeeper’ chemistry at the entrance to pores 3) the ability for biochemical reactions to occur on gatekeeper molecules and 4) an ability to chemically functionalize each side of the membrane independently.Main methodsAligned CNT membranes were fabricated and CNT pore entrances modified with gatekeeper chemistry. Pressure driven fluid flow and diffusion experiments were performed to study the mechanisms of transport through CNTs.Key findingsThe transport mechanism through CNT membranes is primarily 1) ionic diffusion near bulk expectation 2) gas flow enhanced 1–2 orders of magnitude primarily due to specular reflection 3) fluid flow 4–5 orders of magnitude faster than conventional materials due to a nearly ideal slip-boundary interface. The transport can be modulated by ‘gatekeeper’ chemistry at the pore entrance using steric hindrance, electrostatic attraction/repulsion, or biochemical state. The conformation of charged tethered molecules can be modulated by applied bias setting the stage for programmable drug release devices.SignificanceThe membrane structure is mechanically far more robust than lipid bilayer films, allowing for large-scale chemical separations, delivery or sensing based on the principles of protein channels. The performance of protein channels is several orders of magnitude faster than conventional membrane materials. The fundamental requirements of mimicking protein channels are present in the CNT membrane system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号