首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings
Authors:N Arjmand  D Gagnon  A Plamondon  A Shirazi-Adl  C Larivière
Institution:1. Department of Mechanical Engineering, Sharif University of Technology, 11155-9567-Tehran, Iran;2. Division of Applied Mechanics, Department of Mechanical Engineering, École Polytechnique, Montréal, Québec, Canada
Abstract:Despite recent advances in modeling of the human spine, simplifying assumptions are still required to tackle complexities. Such assumptions need to be scrutinized to assess their likely impacts on predictions. A comprehensive comparison of muscle forces and spinal loads estimated by a single-joint (L5–S1) optimisation-assisted EMG-driven (EMGAO) and a multi-joint Kinematics-driven (KD) model of the spine under symmetric (symmetric trunk flexion from neutral upright to maximum forward flexion) and asymmetric (holding a load at various heights in the right hand) activities is carried out. Regardless of the task simulated, the KD model predicted greater activities in extensor muscles as compared to the EMGAO model. Such differences in the symmetric tasks was due mainly to the distinct approaches to resolve the redundancy while in the asymmetric tasks they were due also to the different methods used to estimate joint moments. Shear and compression forces were generally higher in the KD model. Differences in predictions between these modeling approaches varied depending on the task simulated and the joint considered in the single-joint EMGAO model. The EMGAO model should incorporate a multi-joint strategy to satisfy equilibrium at different levels while the KD model should benefit from recorded EMG activities of the antagonistic muscles to supplement input measured kinematics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号