首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stress relaxation of human ankles is only minimally affected by knee and ankle angle
Authors:Maoyi Tian  Phu D Hoang  Simon C Gandevia  Lynne E Bilston  Robert D Herbert
Institution:1. Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;2. Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;3. Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA
Abstract:Comprehensive characterization of stress relaxation in musculotendinous structures is needed to create robust models of viscoelastic behavior. The commonly used quasi-linear viscoelastic (QLV) theory requires that the relaxation response be independent of tissue strain (length). This study aims to characterize stress relaxation in the musculotendinous and ligamentous structures crossing the human ankle (ankle-only structures and the gastrocnemius muscle–tendon unit, which crosses the ankle and knee), and to determine whether stress relaxation is independent of the length of these structures. Two experiments were conducted on 8 healthy subjects. The first experiment compared stress relaxation over 10 min at different gastrocnemius muscle–tendon unit lengths keeping the length of ankle-joint only structures fixed. The second experiment compared stress relaxation at different lengths of ankle-joint only structures keeping gastrocnemius muscle–tendon unit length fixed. Stress relaxation data were fitted with a two-term exponential function (T=G0+G1e?λ1t+G2e?λ2t). The first experiment demonstrated a significant effect of gastrocnemius muscle–tendon unit length on G1, and the second experiment demonstrated an effect of the length of ankle-joint only structures on G2, λ1 and λ2 (p<0.05). Nonetheless, the size of effects on stress relaxation was small (ΔG/G<10%), similar to experimental variability. We conclude that stress relaxation in the relaxed human ankle is minimally affected by changing gastrocnemius muscle–tendon unit length or by changing the lengths of ankle-joint only structures. Consequently quasi-linear viscoelastic models of the relaxed human ankle can use a common stress relaxation modulus at different knee and ankle angles with minimal error.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号