首页 | 本学科首页   官方微博 | 高级检索  
     


Intra‐amniotic mesenchymal stem cell therapy improves the amniotic fluid microenvironment in rat spina bifida aperta fetuses
Authors:Xiaowei Wei  Wei Ma  Hui Gu  Dan Liu  Wenting Luo  Songying Cao  Shanshan Jia  Tianchu Huang  Yiwen He  Yuzuo Bai  Weilin Wang  Zhengwei Yuan
Affiliation:1. Key Laboratory of Health Ministry for Congenital Malformation, Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang People''s Republic of China ; 2. Department of Pediatric Surgery, Shengjing Hospital, China Medical University, Shenyang People''s Republic of China
Abstract:ObjectivesSpina bifida aperta (SBA) is one of the most common neural tube defects. Neural injury in SBA occurs in two stages involving failed neural tube closure and progressive degeneration through contact with the amniotic fluid. We previously suggested that intra‐amniotic bone marrow‐derived mesenchymal stem cell (BMSC) therapy for fetal rat SBA could achieve beneficial functional recovery through lesion‐specific differentiation. The aim of this study is to examine whether the amniotic fluid microenvironment can be improved by intra‐amniotic BMSC transplantation.MethodsThe intra‐amniotic BMSC injection was performed using in vivo rat fetal SBA models. The various cytokine expressions in rat amniotic fluid were screened by protein microassays. Intervention experiments were used to study the function of differentially expressed cytokines.ResultsA total of 32 cytokines showed significant upregulated expression in the BMSC‐injected amniotic fluid. We focused on Activin A, NGF, BDNF, CNTF, and CXCR4. Intervention experiments showed that the upregulated Activin A, NGF, BDNF, and CNTF could inhibit apoptosis and promote synaptic development in fetal spinal cords. Inhibiting the activity of these factors weakened the anti‐apoptotic and pro‐differentiation effects of transplanted BMSCs. Inhibition of CXCR4 activity reduced the engraftment rate of BMSCs in SBA fetuses.ConclusionBMSC transplantation can improve the amniotic fluid environment, and this is beneficial for SBA repair.

In utero intra‐amniotic BMSC or PBS microinjection in the E15 fetuses was performed in E15 rat fetuses with spina bifida aperta, and amniotic fluid was collected at E21 for protein array detection. Venn diagram shows the relationship of three biological processes (GO: 0030335, 0048699, and 0043524) and the attribution of differentially expressed proteins. Comparative analysis of five proteins with the largest fold changes in the process of generation of neurons.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号