首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Year round patchiness of Vibrio vulnificus within a temperate Texas bay
Authors:Franco S L M  Swenson G J  Long R A
Institution:Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
Abstract:Aims: To investigate with high geographical resolution the small‐scale spatial and temporal distribution of the pathogen Vibrio vulnificus throughout the water column in a temperate Texas bay where numerous V. vulnificus infections had been reported by the regional media the previous summer. Methods and Results: Surface and bottom water samples were collected from 19 sites between April 2005 and October 2006 from Matagorda Bay, TX. Physicochemical parameters were measured and V. vulnificus were analysed using quantitative polymerase chain reaction (Q‐PCR) as a means of overcoming constraints of traditional culturing techniques. V. vulnificus was detected through out the year, although it’s temporal and spatial distribution was patchy. V. vulnificus abundances at individual sites ranged from <10 to >1·1 × 103 cells ml?1. No statistically reliable predictive model related to the physicochemical parameters could be developed for this pathogen. Conclusions: his study demonstrates that year round detection of V. vulnificus while likely in the viable but nonculturable (VBNC) state during the winter months and emphasizes why physicochemical factors are insufficient metrics for robust regression modelling of this pathogen. Significance and Impact of the Study: This study provides an effective new tool, Q‐PCR, to study environmental distribution of V. vulnificus and that in the light of the patchy distribution observed, new reliable approaches and a mechanistic understanding of pathogen ecology need to be considered to effectively model the aquatic distribution of V. vulnificus.
Keywords:enumeration  environmental/recreational water  modelling  PCR (polymerase chain reaction)  rapid methods
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号