首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acetylcholine-dependent potentiation of temporal frequency representation in the barrel cortex does not depend on response magnitude during conditioning
Authors:Daniel E Shulz  Valrie Ego-Stengel  Ehud Ahissar
Institution:Unité de Neurosciences Intégratives et Computationnelles, Centre National de la Recherche Scientifique, Institut de Neurobiologie Alfred Fessard, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.
Abstract:The response properties of neurons of the postero-medial barrel sub-field of the somatosensory cortex (the cortical structure receiving information from the mystacial vibrissae can be modified as a consequence of peripheral manipulations of the afferent activity. This plasticity depends on the integrity of the cortical cholinergic innervation, which originates at the nucleus basalis magnocellularis (NBM). The activity of the NBM is related to the behavioral state of the animal and the putative cholinergic neurons are activated by specific events, such as reward-related signals, during behavioral learning. Experimental studies on acetylcholine (ACh)-dependent cortical plasticity have shown that ACh is needed for both the induction and the expression of plastic modifications induced by sensory-cholinergic pairings. Here we review and discuss ACh-dependent plasticity and activity-dependent plasticity and ask whether these two mechanisms are linked. To address this question, we analyzed our data and tested whether changes mediated by ACh were activity-dependent. We show that ACh-dependent potentiation of response in the barrel cortex of rats observed after sensory-cholinergic pairing was not correlated to the changes in activity induced during pairing. Since these results suggest that the effect of ACh during pairing is not exerted through a direct control of the post-synaptic activity, we propose that ACh might induce its effect either pre- or post-synaptically through activation of second messenger cascades.
Keywords:Author Keywords: Hebbian plasticity  Acetylcholine  Barrel cortex  State-dependent learning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号