首页 | 本学科首页   官方微博 | 高级检索  
     


Electromyogram as an indicator of neuromuscular fatigue during incremental exercise
Authors:C. Hanon   C. Thépaut-Mathieu   C. Hausswirth  J. M. Le Chevalier
Affiliation:(1) Laboratoire de Biomécanique et de Physiologie – Institut National du Sport et de l'Education Physique, 11 avenue du Tremblay, F-75 012 Paris, France, FR
Abstract:This study analysed the changes in the electromyographic activity (EMG) of the vastus lateralis muscle (VL) during an incremental maximal oxygen uptake test on a treadmill. A breakpoint in the integrated electromyogram (iEMG)-velocity relationship has already been interpreted in two ways: either as a sign of neuromuscular fatigue or as an expression of the iEMG-velocity relationship characteristics. The aim of this study was to test a method of distinguishing fatigue effects from those due to increases in exercise power. Eight well-trained male runners took part in the study. They completed a running protocol consisting of 4-min stages of increments in power output. Between each stage (about 15 s after the start of a minute at rest), the subjects had to maintain a standard effort: a 10-s isometric leg extension contraction [50% isometric maximal voluntary contraction (IMVC)]. The EMG was recorded during the running and isometric protocols, a change in the EMG signal during the isometric exercise being considered as the sign of fatigue. The iEMG-velocity relationships were strongly fitted by a second-order polynomial function for data taken at both the start (r = 0.98) and the end (r = 0.98) of the stage. Based on the stability of the 50%IMVC-iEMG relationship noted between stages, the start-iEMG has been identified as expressing the iEMG-velocity relationship without fatigue. The stage after which end-iEMG increased significantly more steeply than start-iEMG was considered as the iEMG threshold and was simultaneous with the ventilatory equivalent for carbon dioxide threshold. The parallel changes of minute ventilation and iEMG would suggest the existence of common regulation stimuli linked either to effort intensity and/or to metabolic conditions. The fall in intracellular [K+] has been discussed as being one of the main factors in regulating ventilation. Accepted: 16 December 1997
Keywords:Lactate threshold  Ventilation threshold  Surface electromyography threshold  Treadmill running  Isometric exercise
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号