首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Niemann-Pick type II fibroblasts exhibit impaired cholesterol esterification in response to sphingomyelin hydrolysis.
Authors:D M Byers  M W Morgan  H W Cook  F B Palmer  M W Spence
Institution:Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
Abstract:Fibroblasts from patients with Niemann-Pick Type II disease, including the panethnic type C (NPC) and Nova Scotia Acadian type D (NPD) forms, exhibit reduced or delayed stimulation of cholesterol esterification by low density lipoprotein (LDL). Based on recent evidence that cholesterol esterification can also be stimulated by cell surface sphingomyelin hydrolysis, we have compared the response of normal, NPC and NPD fibroblasts to treatment with exogenous sphingomyelinase (SMase). Staphylococcus aureus SMase (greater than 0.05 U/ml) hydrolyzed over 90% of endogenous sphingomyelin within 1 h and increased incorporation of 3H]oleic acid into cholesterol-3H]oleate after an initial lag in all three cell types. However, normal levels of cholesterol esterification were not observed for NP Type II fibroblasts: four NPD cell lines exhibited an average of 32% of normal response while cholesterol esterification was only 20% in two well-characterized NPC lines. A third NPC line exhibited normal response to SMase despite greater than 90% impairment of LDL-stimulated cholesterol esterification. Incubation of fibroblasts with LDL followed by SMase produced a synergistic response, particularly in NPC cells where there was little response to either treatment alone. Chloroquine abolished LDL-stimulated cholesterol esterification in normal fibroblasts but had no effect on the response to SMase, indicating that lysosomal enzymes may not be involved in SMase-mediated cholesterol esterification. These results suggest that intracellular processing of cholesterol derived from either LDL or release from the plasma membrane (by sphingomyelin hydrolysis) is affected in Niemann-Pick Type II cells and that these pathways can complement one another in the stimulation of cholesterol esterification.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号