首页 | 本学科首页   官方微博 | 高级检索  
     


Biodiversity and dynamics of cyanobacterial communities during blooms in temperate lake (Harsha Lake,Ohio, USA)
Affiliation:1. Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1417864411, Iran;2. Energy and environmental sustainability for megacities (E2S2), NUS Environmental Research Institute (NERI), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602 Singapore;3. Department of Civil & Environmental Engineering, National University of Singapore, Blk E1A-07-03, 1 Engineering 2, Singapore 117576, Singapore
Abstract:Cyanobacterial blooms are intensifying global ecological hazards. The fine structure and dynamics of bloom community are critical to understanding bloom development but little understood. Here, the questions whether dominant bloomers have high diversity and whether dominant OTUs (operational taxonomical units) compete with one another were addressed. 16S rRNA gene amplicons from an annual bloom at five locations in Harsha Lake (Ohio, USA) showed cyanobacteria were the dominant phylum, and co-existing major bacterial phyla included Proteobacteria, Bacteroidetes, Actinoacteria, and Verrucomicrobia. On the genus level, the initial dominance by Dolichospermum in June yielded to Planktothrix in July, which were replaced by Microcystis and Cylindrospermopsis in August throughout the bloom. Based on the number of verified unique OTUs (a within-genus biodiversity metric), dominant genera tended to have high within-genus diversity. For example, Dolichospermum had 57 unique OTUs, Planktothrix had 36, Microcystis had 12, and Cylindrospermopsis had 4 unique OTUs. Interestingly, these different OTUs showed different dynamics and association with other OTUs. First, no between-OTU competitions were observed during the bloom cycle, and dominant OTUs were abundant throughout the bloom. Such biodiversity of OTUs and their dynamics were verified in Microcystis aeruginosa with two microcystin synthetase genes (mcyA and mcyG): the relative abundance of both genes varied during the bloom based on quantitative PCR. Two Dolichospermum circinale OTUs and one P. rubescens OTU were most abundant and persistently present throughout the entire bloom. Second, these OTUs differed in the OTUs they were associated with. Third, these OTUs tended to have different levels of association with the environmental factors, even they belonged to the same genera. These findings suggest the structure and dynamics of a cyanobacterial bloom community is complex, with only few OTUs dominating the bloom. Thus, high-resolution molecular characterization will be necessary to understand bloom development.
Keywords:Cyanobacterial blooms  16S rRNA gene  Harsha Lake  Genetic diversity  Unique operational taxonomic unit
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号