首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Removal of sodium channel inactivation in squid giant axons by n-bromoacetamide
Authors:G S Oxford  C H Wu  T Narahashi
Abstract:The group-specific protein reagents, N-bromacetamide (NBA) and N- bromosuccinimide (NBS), modify sodium channel gating when perfused inside squid axons. The normal fast inactivation of sodium channels is irreversibly destroyed by 1 mM NBA or NBS near neutral pH. NBA apparently exhibits an all-or-none destruction of the inactivation process at the single channel level in a manner similar to internal perfusion of Pronase. Despite the complete removal of inactivation by NBA, the voltage-dependent activation of sodium channels remains unaltered as determined by (a) sodium current turn-on kinetics, (b) sodium tail current kinetics, (c) voltage dependence of steady-state activation, and (d) sensitivity of sodium channels to external calcium concentration. NBA and NBS, which can cleave peptide bonds only at tryptophan, tyrosine, or histidine residues and can oxidize sulfur- containing amino acids, were directly compared with regard to effects on sodium inactivation to several other reagents exhibiting overlapping protein reactivity spectra. N-acetylimidazole, a tyrosine-specific reagent, was the only other compound examined capable of partially mimicking NBA. Our results are consistent with recent models of sodium inactivation and support the involvement of a tyrosine residue in the inactivation gating structure of the sodium channel.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号