首页 | 本学科首页   官方微博 | 高级检索  
     


Carbon and nitrogen isotope ratios, nitrogen content and heterotrophy in New Zealand mistletoes
Authors:Peter Bannister  Graham L. Strong
Affiliation:Department of Botany, University of Otago, PO Box 56, Dunedin, New Zealand,
Abstract:The carbon isotope ratio ('13C) of New Zealand mistletoes (-29.51ǂ.10‰) and their hosts (-28.89ǂ.12‰) is generally more negative, and shows less difference between mistletoes and their hosts, than found in previous studies. In 37% of the examined pairs, the '13C of mistletoes was less negative than that of their hosts. These reversals were not associated with the relative position (proximal or distal) of the host material with regard to the mistletoe. Differences between host and mistletoe tended to be greater on hosts with less negative '13C. Both nitrogen content and isotope ratio ('15N) of the mistletoe leaves were strongly correlated with those of their hosts. Nitrogen contents of mistletoe leaves were similar to those of their hosts at low nitrogen contents but proportionately less on hosts with a high nitrogen content, whereas '15N of mistletoes was consistently similar to that of their hosts. The '13C of mistletoes was related to both host nitrogen content and '15N, but '13C in host tissue was related to neither, suggesting that the mistletoes derived both nitrogen and carbon from their hosts. The '13C of both hosts and mistletoes were significantly related to leaf conductance and carbon dioxide concentration but relationships with transpiration and water use efficiency were not significant. In all cases there was no clear separation between the responses of hosts and mistletoes. This may be related to the similarity of stomatal conductance, transpiration and photosynthesis in the studied mistletoes and their hosts and is consistent with the small differences in '13C between mistletoes and hosts found in this study. Consequently, the estimation of mistletoe heterotrophy from carbon discrimination is confounded, as the small difference between host and mistletoe carbon discrimination could equally well result from either similarities in photosynthesis and water relations or heterotrophic assimilation of host-derived carbon. The differences between our study and previous studies (which are mostly from seasonally dry or semi-arid to arid environments) may be related to the temperate environment in which these mistletoes grow. Water is freely available so that the mistletoe is able to obtain sufficient water and dissolved nutrients without having to maintain the high transpiration rate and low water potentials that are needed to extract water from a water-stressed host. Similarly, mistletoe photosynthesis is less inhibited by water stress. The physiological similarities between mistletoe and hosts from a temperate environment are reflected in their similar '13C values.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号