首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The follicle-deplete mouse ovary produces androgen
Authors:Mayer Loretta P  Devine Patrick J  Dyer Cheryl A  Hoyer Patricia B
Institution:Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA.
Abstract:The follicle-depleted postmenopausal ovary is enriched in interstitial cells that produce androgens. This study was designed to cause follicle depletion in mice using the industrial chemical, 4-vinylcyclohexene diepoxide (VCD), and characterize the steroidogenic capacity of cells in the residual ovarian tissue. From a dose-finding study, the optimal daily concentration of VCD was determined to be 160 mg/kg. Female B6C3F(1) immature mice were treated daily with vehicle control or VCD (160 mg kg(-1) day(-1), 15 days, i.p.). Ovaries were removed and processed for histological evaluation. On Day 15 following onset of treatment, primordial follicles were depleted and primary follicles were reduced to about 10% of controls. On Day 46, primary follicles were depleted and secondary and antral follicles were reduced to 0.7% and 2.6% of control, respectively. Seventy-five percent of treated mice displayed disruptions in estrous cyclicity. All treated mice were in persistent diestrus (acyclic) by Day 58. Plasma FSH levels were increased (P < 0.05) relative to controls on Day 37 and had plateaued by Day 100. Relative to age-matched cyclic controls, by Day 127, the significant differences in VCD-treated mice included reduced ovarian and uterine weights, elevated plasma LH and FSH, and reduced plasma progesterone and androstenedione. Furthermore, plasma 17beta-estradiol levels were nondetectable. Unlike controls, immunostaining for LH receptor, and the high density lipoprotein receptor (SR-BI), was diffuse in ovarian sections from VCD-treated animals. Ovaries from Day 120 control and VCD-treated animals were dissociated and dispersed cells were placed in culture. Cultured cells from ovaries of VCD-treated animals produced less LH-stimulated progesterone than control cells. Androstenedione production was nondetectable in cells from cyclic control animals. Conversely, cells from VCD-treated animals produced androstenedione that was doubled in the presence of insulin and LH (1 and 3 ng/ml). Collectively, these data demonstrate that VCD-mediated follicle depletion results in residual ovarian tissue that may be analogous to the follicle-deplete postmenopausal ovary. This may serve as a useful animal model to examine the dynamics of follicle loss in women as ovarian senescence ensues.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号