首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of p53 gene point mutation using sequence-specific molecularly imprinted PoPD electrode
Authors:Tiwari Ashutosh  Deshpande Swapneel R  Kobayashi Hisatoshi  Turner Anthony P F
Affiliation:Biosensors and Bioelectronics Centre, Institute of Physics, Chemistry and Biology, IFM-Link?ping University, S-58183 Link?ping, Sweden. ashutosh.tiwari@liu.se
Abstract:An amperometric sequence-specific molecularly imprinted single-stranded oligodeoxyribonucleotide (ss-ODN) biosensor was fabricated and characterised in this study. Using ss-ODN as the template and o-phenylenediamine as the functional monomer, the ODN biosensor was fabricated by an electropolymerisation process on an indium-tin oxide (ITO) coated glass substrate. The template ss-ODN was washed out of the ss-ODN/poly(o-phenylenediamine)(PoPD)/ITO electrode using sterilised basic ethanol-water. The resulting ss-ODN imprinted PoPD/ITO electrode was characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV). The amperometric responses, i.e., Δi as a function of the target ss-ODN concentration was studied. The biosensor using ss-ODN imprinted PoPD/ITO as the working electrode showed a linear Δ current response to the target ss-ODN concentration within the range of 0.01-300 fM. The biosensor showed a sensitivity of 0.62 μA/fM, with a response time of 14s. The present novel molecularly imprinted ss-ODN biosensor could greatly benefit in terms of cost-effectiveness, storage stability, ultra sensitivity and selectivity together with the potential for improved commercial genetic sensors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号