首页 | 本学科首页   官方微博 | 高级检索  
     


Monoclonal antibody epitope mapping describes tailspike beta-helix folding and aggregation intermediates
Authors:Jain Madhulika  Evans Michael S  King Jonathan  Clark Patricia L
Affiliation:Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556 , USA.
Abstract:There is growing interest in understanding how the cellular environment affects protein folding mechanisms, but most spectroscopic methods for monitoring folding in vitro are unsuitable for experiments in vivo or in other complex mixtures. Monoclonal antibody binding represents a sensitive structural probe that can be detected against the background of other cellular components. A panel of antibodies has been raised against Salmonella typhimurium phage P22 tailspike. In this report, nine alpha-tailspike antibody binding epitopes were characterized by measuring the binding of these monoclonal antibodies to tailspike variants bearing surface point mutations. These results reveal that the antibody epitopes are distributed throughout the tailspike structure, with several clustered in the central parallel beta-helix domain. The ability of each antibody to distinguish between tailspike conformational states was assessed by measuring antibody binding to tailspike in vitro refolding intermediates. Interestingly, the binding of all but one of the nine antibodies is sensitive to the tailspike conformational state. Whereas several antibodies bind preferentially to the tailspike native structure, the structural features that comprise the binding epitopes form with different rates. In addition, two antibodies preferentially recognize early refolding intermediates. Combined with the epitope mapping, these results indicate portions of the beta-helix form early during refolding, perhaps serving as a scaffold for the formation of additional structure. Finally, three of the antibodies show enhanced binding to non-native, potentially aggregation-prone tailspike conformations. The refolding results indicate these non-native conformations form early during the refolding reaction, long before the appearance of native tailspike.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号