Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. |
| |
Authors: | X Liang A Nazarian H Erdjument-Bromage W Bornmann P Tempst M D Resh |
| |
Affiliation: | Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA. |
| |
Abstract: | Fatty acylation of Src family kinases is essential for localization of the modified proteins to the plasma membrane and to plasma membrane rafts. It has been suggested that the presence of saturated fatty acyl chains on proteins is conducive for their insertion into liquid ordered lipid domains present in rafts. The ability of unsaturated dietary fatty acids to be attached to Src family kinases has not been investigated. Here we demonstrate that heterogeneous fatty acylation of Src family kinases occurs and that the nature of the attached fatty acid influences raft-mediated signal transduction. By using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we show that in addition to 14:0 (myristate), 14:1 and 14:2 fatty acids can be attached to the N-terminal glycine of the Src family kinase Fyn when the growth media are supplemented with these dietary fatty acids. Moreover, we synthesized novel iodinated analogs of oleate and stearate, and we showed that heterogeneous S-acylation can occur on cysteine residues within Fyn as well as Galpha, GAP43, and Ras. Modification of Fyn with unsaturated or polyunsaturated fatty acids reduced its raft localization and resulted in decreased T cell signal transduction. These studies establish that heterogeneous fatty acylation is a widespread occurrence that serves to regulate signal transduction by membrane-bound proteins. |
| |
Keywords: | |
|
|