首页 | 本学科首页   官方微博 | 高级检索  
   检索      


CYP330A1 and CYP4C39 enzymes in the shore crab Carcinus maenas: sequence and expression regulation by ecdysteroids and xenobiotics
Authors:Rewitz Kim  Styrishave Bjarne  Andersen Ole
Institution:Department of Life Sciences and Chemistry, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
Abstract:Cytochrome P450 enzymes (CYP enzymes) catalyse important metabolic reactions of exogenous and endogenous substrates, including steroid hormones. Here, we report the first two CYP sequences from the shore crab, Carcinus maenas. Two complete cDNAs isolated from crab hepatopancreas encode CYP enzymes named CYP330A1, the first member of a new family, and CYP4C39. CYP330A1 is closest related to members of the CYP2 family (37.3% identical to mouse CYP2J6) and CYP4C39 is most identical to crayfish CYP4C15 (59.5%). CYP330A1 gene expression was induced in hepatopancreas of male green intermoult crabs by ecdysone and ponasterone A, but also by benzo(a)pyrene and phenobarbital. CYP330A1 induction was not observed in red crabs. The present results indicate that the CYP330A1 enzyme may be involved in ecdysteroid metabolism, presumably catabolism, and in the detoxification of environmental pollutants. Ecdysteroids or xenobiotics did not affect CYP4C39 gene expression. The fact that both ecdysteroids and xenobiotics affect CYP330A1 gene expression indicates that mutual interactions between chemical exposures and endocrine functions may exist in the shore crab.
Keywords:P450  CYP330A1  CYP4C39  Shore crab  Carcinus maenas  Sequences  Ecdysteroids  Xenobiotics  Expression
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号