首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stimulation of potassium cycling in mitochondria by long-chain fatty acids
Authors:Peter Schönfeld  Stefan Gerke  Lech Wojtczak
Institution:a Institute of Biochemistry, Otto-von-Guericke-University, Leipziger Str. 44, D-39120 Magdeburg, Germany
b Nencki Institute of Experimental Biology, Pasteura 3, PL-02-093 Warsaw, Poland
Abstract:Nonesterified long-chain fatty acids (myristic, palmitic, oleic and arachidonic), added at low amounts (around 20 nmol/mg protein) to rat liver mitochondria, energized by respiratory substrates and suspended in isotonic solutions of KCl, NaCl, RbCl or CsCl, adjusted to pH 8.0, induce a large-scale swelling followed by a spontaneous contraction. Such swelling does not occur in alkaline solutions of choline chloride or potassium gluconate or sucrose. These changes in the matrix volume reflect a net uptake, followed by net extrusion, of KCl (or another alkali metal chloride) and are characterized by the following features: (1) Lowering of medium pH from 8.0 to 7.2 results in a disappearance of the swelling-contraction reaction. (2) The contraction phase disappears when the respiration is blocked by antimycin A. (3) Quinine, an inhibitor of the K+/H+ antiporter, does not affect swelling but suppresses the contraction phase. (4) The swelling phase is accompanied by a decrease of the transmembrane potential and an increase of respiration, whereas the contraction is followed by an increase of the membrane potential and a decrease of oxygen uptake. (5) Nigericin, a catalyst of the K+/H+ exchange, prevents or partly reverses the swelling and partly restores the depressed membrane potential. These results indicate that long-chain fatty acids activate in liver mitochondria suspended in alkaline saline media the uniporter of monovalent alkali metal cations, the K+/H+ antiporter and the inner membrane anion channel. These effects are presumably related to depletion of mitochondrial Mg2+, as reported previously Arch. Biochem. Biophys. 403 (2002) 16], and are responsible for the energy-dissipating K+ cycling. The uniporter and the K+/H+ antiporter are in different ways activated by membrane stretching and/or unfolding, resulting in swelling followed by contraction.
Keywords:Fatty acid  K+ uniport  K+/H+ antiport  K+ cycling  Swelling  Transmembrane potential  Energy dissipation  Mitochondrion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号