首页 | 本学科首页   官方微博 | 高级检索  
     


Selective amphipathic nature of chlorpromazine binding to plasma membrane bilayers
Authors:James Y. Chen  Linda S. Brunauer  Colleen M. Helsel  Wray H. Huestis
Affiliation:a Department of Chemistry, Stanford University, 380 Roth Way, Stanford, CA 94305-5080, USA
b Department of Chemistry, Santa Clara University, Santa Clara, CA 95053, USA
Abstract:Chlorpromazine (CPZ), an antipsychotic agent shown to inhibit the action of various neurophysiological receptors, also exhibits preferential association with the plasma membrane, inducing stomatocytic morphological response in red blood cells (RBC). Given the cationic nature of CPZ, fluorimetry, pH titration, and red cell morphological studies were performed to assess the associative predilection of CPZ for anionic membrane components. CPZ fluorescence intensity increased 320-370% upon addition of phosphatidylcholine (PC) small unilamellar vesicles (SUVs) to aqueous CPZ, indicating an affinity of the drug for lipidic phases. After removal of unbound drug, CPZ fluorescence increased up to 92% with increasing phosphatidylserine (PS) in the lipid phase (up to 30 mol% of total lipid), suggesting a preferential association of the drug with anionic lipids. In studies of pH titration, the pKa of CPZ in the presence of Triton X-100 micelles or phospholipid SUVs increased with increasing anionicity of the lipidic phase [7.8 with Triton X-100, 8.0 with PC, 8.3 with phosphatidylglycerol (PG)], lending further support to preferential drug interaction with anionic lipidic components. At 0 °C, CPZ-induced red cell shape change was less extensive in cells made echinocytic by adenosine triphosphate (ATP) depletion, compared to cells made echinocytic by PS treatment following vanadate preincubation. This suggests that polyphosphoinositide lipids are CPZ membrane binding sites. Since polyphosphoinositide lipids are implicated as important intermediates in a number of receptor-mediated cell signaling pathways, evidence of association with these specific lipids provides a means by which psychoactive drugs may induce neurophysiological effects through direct interaction with general membrane components.
Keywords:Chlorpromazine   Electrostatic   Amphipathic   Membrane   Erythrocyte   Fluorescence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号