首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Attenuated total reflection IR spectroscopy as a tool to investigate the orientation and tertiary structure changes in fusion proteins
Authors:I Martin
Institution:Structure and Function of Biological Membranes, Center of Structural Biology and Bioinformatics, Université Libre de Bruxelles, Boulevard du Triomphe C.P. 206/2, B-1050 Brussels, Belgium
Abstract:Membrane fusion proceeds via a merging of two lipid bilayers and a redistribution of aqueous contents and bilayer components. It involves transition states in which the phospholipids are not arranged in bilayers and in which the monolayers are highly curved. Such transition states are energetically unfavourable since biological membranes are submitted to strong repulsive hydration electrostatic and steric barriers. Viral membrane proteins can help to overcome these barriers. Viral proteins involved in membrane fusion are membrane associated and the presence of lipids restricts drastically the potential of methods (RMN, X-ray crystallography) that have been used successfully to determine the tertiary structure of soluble proteins. We describe here how IR spectroscopy allows to solve some of the problems related to the lipid environment.The principles of the method, the experimental setup and the preparation of the samples are briefly described. A few examples illustrate how attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy can be used to gain information on the orientation and the accessibility to the water phase of the fusogenic domain of viral proteins. Recent developments suggest that the method could also be used to detect changes located in the membrane domains and to identify intermediate structural states involved in the fusion process.
Keywords:Attenuated total reflection  IR spectroscopy  Fusion peptide orientation  Hydrogen/deuterium exchange  Dichroic spectra
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号