首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Phasic contractions of the rat portal vein depend on intracellular Ca2+ release stimulated by depolarization
Authors:Burt Richard P
Institution:Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom. r.burt@ucl.ac.uk
Abstract:The phasic contraction to phenylephrine of the rat isolated portal vein was investigated using functional studies. Phasic contractions to phenylephrine and caffeine could be produced after several minutes in Ca(2+)-free Krebs solution, which were inhibited by cyclopiazonic acid or ryanodine. The phenylephrine and caffeine contractions were abolished, however, within 10 min in Ca(2+)-free Krebs solution and by nifedipine. This indicated the Ca(2+) stores were depleted in the absence of Ca(2+) influx through voltage-gated channels. The phasic contraction to phenylephrine was also abolished by niflumic acid even in Ca(2+)-free Krebs solution. This showed that the response depended on intracellular Ca(2+) release stimulated directly by depolarization, resulting from opening of Ca(2+)-activated Cl(-) channels, but did not require Ca(2+) influx. In support of this, K(+)-induced phasic contractions were also produced in Ca(2+)-free Krebs solution. The phenylephrine but not K(+)-induced phasic contractions in Ca(2+)-free Krebs solution were inhibited by ryanodine or cyclopiazonic acid. This would be consistent with Ca(2+) release from more superficial intracellular stores (affected most by these agents), probably by inositol 1,4,5-trisphospate, being required to stimulate the phenylephrine depolarization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号