DNA crosslinking and biological activity of a hairpin polyamide-chlorambucil conjugate |
| |
Authors: | Wang Yong-Dong Dziegielewski Jaroslaw Wurtz Nicholas R Dziegielewska Barbara Dervan Peter B Beerman Terry A |
| |
Affiliation: | Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA. |
| |
Abstract: | A prototype of a novel class of DNA alkylating agents, which combines the DNA crosslinking moiety chlorambucil (Chl) with a sequence-selective hairpin pyrrole-imidazole polyamide ImPy-beta-ImPy-gamma-ImPy-beta-Dp (polyamide 1), was evaluated for its ability to damage DNA and induce biological responses. Polyamide 1-Chl conjugate (1-Chl) alkylates and interstrand crosslinks DNA in cell-free systems. The alkylation occurs predominantly at 5'-AGCTGCA-3' sequence, which represents the polyamide binding site. Conjugate-induced lesions were first detected on DNA treated for 1 h with 0.1 micro M 1-Chl, indicating that the conjugate is at least 100-fold more potent than Chl. Prolonged incubation allowed for DNA damage detection even at 0.01 micro M concentration. Treatment with 1-Chl decreased DNA template activity in simian virus 40 (SV40) in vitro replication assays. 1-Chl inhibited mammalian cell growth, genomic DNA replication and cell cycle progression, and arrested cells in the G2/M phase. Moreover, cellular effects were observed at 1-Chl concentrations similar to those needed for DNA damage in cell-free systems. Neither of the parent compounds, unconjugated Chl or polyamide 1, demonstrated any cellular activity in the same concentration range. The conjugate molecule 1-Chl possesses the sequence-selectivity of a polyamide and the enhanced DNA reactivity of Chl. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|