首页 | 本学科首页   官方微博 | 高级检索  
     


Brief Subthreshold Events Can Act as Hebbian Signals for Long-Term Plasticity
Authors:Elodie Fino  Jean-Michel Deniau  Laurent Venance
Affiliation:Dynamics and Pathophysiology of Neuronal Networks, INSERM U-667, Collège de France, University Pierre et Marie Curie, Paris, France.;INSERM U862, France
Abstract:

Background

Action potentials are thought to be determinant for the induction of long-term synaptic plasticity, the cellular basis of learning and memory. However, neuronal activity does not lead systematically to an action potential but also, in many cases, to synaptic depolarizing subthreshold events. This is particularly exemplified in corticostriatal information processing. Indeed, the striatum integrates information from the whole cerebral cortex and, due to the membrane properties of striatal medium spiny neurons, cortical inputs do not systematically trigger an action potential but a wide range of subthreshold postsynaptic depolarizations. Accordingly, we have addressed the following question: does a brief subthreshold event act as a Hebbian signal and induce long-term synaptic efficacy changes?

Methodology/Principal Findings

Here, using perforated patch-clamp recordings on rat brain corticostriatal slices, we demonstrate, that brief (30 ms) subthreshold depolarizing events in quasi-coincidence with presynaptic activity can act as Hebbian signals and are sufficient to induce long-term synaptic plasticity at corticostriatal synapses. This “subthreshold-depolarization dependent plasticity” (SDDP) induces strong, significant and bidirectional long-term synaptic efficacy changes at a very high occurrence (81%) for time intervals between pre- and postsynaptic stimulations (Δt) of −110<Δt<+110 ms. Such subthreshold depolarizations are able to induce robust long-term depression (cannabinoid type-1 receptor-activation dependent) as well as long-term potentiation (NMDA receptor-activation dependent).

Conclusion/Significance

Our data show the existence of a robust, reliable and timing-dependent bidirectional long-term plasticity induced by brief subthreshold events paired with presynaptic activity. The existence of a subthreshold-depolarization dependent plasticity extends considerably, beyond the action potential, the neuron''s capabilities to express long-term synaptic efficacy changes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号