首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Escherichia coli O157:H7 Strain Origin,Lineage, and Shiga Toxin 2 Expression Affect Colonization of Cattle
Authors:Ross M S Lowe  Danica Baines  L Brent Selinger  James E Thomas  Tim A McAllister  Ranjana Sharma
Institution:Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada,1. Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada2.
Abstract:Enterohemorrhagic Escherichia coli O157:H7 has evolved into an important human pathogen with cattle as the main reservoir. The recent discovery of E. coli O157:H7-induced pathologies in challenged cattle has suggested that previously discounted bacterial virulence factors may contribute to the colonization of cattle. The objective of the present study was to examine the impact of lineage type, cytotoxin activity, and cytotoxin expression on the amount of E. coli O157:H7 colonization of cattle tissue and cells in vitro. Using selected bovine- and human-origin strains, we determined that lineage type predicted the amount of E. coli O157:H7 strain colonization: lineage I > intermediate lineages > lineage II. All E. coli O157:H7 strain colonization was dose dependent, with threshold colonization at 103 to 105 CFU and maximum colonization at 107 CFU. We also determined that an as-yet-unknown factor of strain origin was the most dominant predictor of the amount of strain colonization in vitro. The amount of E. coli O157:H7 colonization was also influenced by strain cytotoxin activity and the inclusion of cytotoxins from lineage I or intermediate lineage strains increased colonization of a lineage II strain. There was a higher level of expression of the Shiga toxin 1 gene (stx1) in human-origin strains than in bovine-origin strains. In addition, lineage I strains expressed higher levels of the Shiga toxin 2 gene (stx2). The present study supports a role for strain origin, lineage type, cytotoxin activity, and stx2 expression in modulating the amount of E. coli O157:H7 colonization of cattle.Enterohemorrhagic Escherichia coli O157:H7 is a bacterium that causes serious human disease outbreaks through the consumption of contaminated food or water (39). Mature cattle are considered the primary reservoir for E. coli O157:H7 and historically were reported to have no symptoms or pathologies (17, 23, 38); this was attributed both to a lack of receptors for a critical E. coli O157:H7 virulence factor, Shiga toxin 1 (Stx1 29]), and to a differential expression of type III protein secretion system effector molecules such as EspA, EspD, and Iha (25, 30) in cattle compared to humans. In 2008, it was established for the first time that E. coli O157:H7 causes mild to severe intestinal pathology in persistent shedding cattle (5, 26) and that the secreted cytotoxins enhanced E. coli O157:H7 colonization of intestinal tissues of cattle (6). This suggested that cattle were susceptible to E. coli O157:H7 infection and that previously discounted virulence factors could influence the amount of colonization in cattle.Three distinct E. coli O157:H7 lineages have been identified based on the lineage specific polymorphism assay (LSPA-6) that suggests both the evolutionary history of the strain and their propensity to be present among animals, the environment, and clinical human isolates (21, 22, 24, 33, 40, 42). Typically, two predominant lineages have been described, lineages I and II (22, 40) and, more recently, intermediate lineages that have characteristics of lineage I and/or II have been reported at higher frequency among cattle (34). Although all E. coli O157:H7 lineages have been isolated from feedlot cattle, the predominant recovery of lineage I from clinical human illnesses suggests that this particular lineage type has unique expression patterns that may contribute to its preferential colonization of humans. There is some evidence to suggest that lineage I strains do not express certain virulence factors in bovine hosts, whereas other factors such as cytotoxins are expressed equally irrespective of host (30). One virulence factor associated with all lineages is the bacterium''s ability to form intimate attaching-and-effacing lesions or colonization sites in the ilea of susceptible animals (28). The amount of colonization is enhanced by the expression of Shiga toxin 2 (Stx2) through both an increase in the expression of alternative non-TIR (translocated intimin receptor) colonization sites (31) and toxicity to the absorptive epithelial cells (32). In cattle, attaching-and-effacing lesions are also formed (5), and Stx2 increases colonization but is not cytotoxic to epithelial cells from the jejuna and descending colons of cattle (4). Differential expression of stx2 among E. coli O157:H7 lineages is also linked to the increased pathogenicity of lineage I strains in humans (25), and this may affect cattle similarly. Together, this information suggests that at least some similar virulence factors affecting E. coli O157:H7 colonization in humans also function in cattle.In order to gain a better understanding of the factors modulating E. coli O157:H7 colonization in cattle, we compared the ability of lineage I, lineage II, and intermediate lineages isolated from human sources to colonize the jejunum tissue and a colonic cell line from cattle. We hypothesized that the bovine colonic cell line could be used as a model system to reflect E. coli O157:H7 colonization of tissue. To confirm the value of this model, the role of strain origin in colonization of cattle was examined. In order to understand the differences in colonization associated with lineage and strain origins, we assessed cytotoxin expression, secreted cytotoxin activity, and cytotoxin-induced changes in E. coli O157:H7 colonization. Given the known lack of Stx1 activity in cattle, we examined the effects of LSPA-6 genotype, strain origin (human versus bovine), and cytotoxin activity on E. coli O157:H7 colonization of cattle.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号