首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dead-End Hollow-Fiber Ultrafiltration for Recovery of Diverse Microbes from Water
Authors:Carmela M Smith  Vincent R Hill
Institution:Centers for Disease Control and Prevention, National Center for Zoonotic, Vector-borne and Enteric Diseases, Division of Parasitic Diseases, Atlanta, Georgia,1. Atlanta Research and Education Foundation, Decatur, Georgia2.
Abstract:Dead-end ultrafiltration (DEUF) is an alternative approach to tangential-flow hollow-fiber ultrafiltration that can be readily employed under field conditions to recover microbes from water. The hydraulics of DEUF and microbe recovery for a new DEUF method were investigated using 100-liter tap water samples. Pressure, flow rate, and temperature were investigated using four hollow-fiber ultrafilter types. Based on hydraulic performance, the Asahi Kasei REXEED 25S ultrafilter was selected for microbe recovery experiments. Microbe recovery experiments were performed using MS2 bacteriophage, Enterococcus faecalis, Clostridium perfringens spores, and Cryptosporidium parvum oocysts. Microbes were recovered from ultrafilters by backflushing using a surfactant solution. Average flow rates were 2.1 liters/min for 100-liter water samples having turbidities of 0.28 to 4.3 nephelometric turbidity units (NTU), and no evidence of appreciable filter clogging was observed. The DEUF average recovery efficiencies for each study analyte in tap water were as follows: for E. faecalis, 93% ± 16%; for MS2, 57% ± 7.7%; for C. perfringens spores, 94% ± 22%; and for C. parvum, 87% ± 18%. Average microbe recoveries for tap water amended with surface water (average turbidity = 4.3 NTU) were as follows: for E. faecalis, 78% ± 12%; for MS2, 73% ± 13%; for C. perfringens, 57% ± 21%; and for C. parvum, 83% ± 21%. These data demonstrate that DEUF is an effective method for recovering diverse microbes from water and should be a useful tool for field-based environmental investigations.There are an estimated 4 million to 33 million cases of acute gastrointestinal illness each year in the United States due to drinking water (3, 11). From 2005 to 2006, 20 reports of waterborne disease and outbreaks (WBDOs) associated with drinking water were submitted to the national Waterborne Disease and Outbreak Surveillance System (19). In addition, a record number (78 reports) of WBDOs associated with recreational water were also submitted to the Waterborne Disease and Outbreak Surveillance System in 2005 and 2006 (20). Detecting the etiologic agents for WBDOs is challenging due to such factors as the time delay between case exposure and water sampling, microbial die-off, and water dilution or treatment prior to sampling. Because it is likely that pathogens will be present at low concentrations in water sampled for outbreak investigations, relatively large volumes of water (e.g., 40 to 100 liters) should be collected. In addition, sampling water for a diverse array of microbes is sometimes a goal when multiple etiologic agents are suspected for a WBDO (13) or during emergency responses when the contaminant has not been identified.Hollow-fiber ultrafiltration (UF) has been shown to be an effective technique for collecting large-volume water samples for recovery of diverse microbes, including viruses, vegetative bacteria, bacterial spores, and parasites (5, 6, 10, 12, 14). However, most hollow-fiber UF techniques utilize a tangential-flow approach that requires comprehensive operator training and which is generally not conducive to rapid-response implementation for field sampling. While the tangential-flow (i.e., recirculating flow) UF technique has been shown to be effective for microbe recovery, it is a more complicated sampling technique than traditional direct-filtration techniques, such as membrane filtration for coliforms (1), microfiltration for Cryptosporidium and Giardia (oo)cysts (18), and adsorption-elution microfiltration for viruses (4). For emergency response, outbreak investigations, or other field investigations performed by personnel with limited training in water sample collection, a dead-end UF (DEUF) technique would be useful for capturing and recovering multiple microbe classes.Relatively few studies have reported using hollow-fiber UF in a DEUF configuration. Kearns et al. (7) reported using an automated DEUF system to recover Bacillus atrophaeus spores from tap water, with reported recovery efficiencies of 23 to 40% in ∼100-liter samples with low-level seeding (330 to 1,000 CFU). These researchers performed filter backflushing using a phosphate buffer containing either Tween 20 or sodium polyphosphate. Kearns et al. also reported suspected ultrafilter fouling based on measured reductions in flow rates for ∼100-liter samples (7). The Kearns et al. observations indicate that the ultrafilter pore size and filter area are important hydraulic performance variables for the DEUF technique. Leskinen and Lim (9) reported using hollow-fiber DEUF for recovery of enterococci from 100-liter samples of beach water. These researchers used a urea-lysine solution to elute (instead of backflush) enterococci from ultrafilters. Leskinen and Lim reported a wide range of recovery efficiencies (4 to 708%; average = 251%) for their DEUF method but did not discuss whether water quality (other than a potential variability in microbe distribution in the 100-liter samples) could have contributed to ultrafilter fouling or variable method performance (9).The present study was designed to investigate DEUF using different commercially available hollow-fiber ultrafilters having a range of pore sizes and filter medium sizes. The parameters tested included the effect of the water sample flow rate and temperature on system pressure and the effect of turbidity on the permeate flow rate and microbial recovery efficiencies. A suite of four distinctly different microbes (MS2 bacteriophage, Enterococcus faecalis, Clostridium perfringens spores, and Cryptosporidium parvum oocysts) was studied to determine the performance of the DEUF method for simultaneous recovery of diverse microbes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号