首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A genetic demographic analysis of Lake Malawi rock‐dwelling cichlids using spatio‐temporal sampling
Authors:Martin Husemann  Rachel Nguyen  Baoqing Ding  Patrick D Danley
Institution:1. Biology Department, Baylor University, Waco, TX, USA;2. Department of General Zoology, Institute of Biology, Martin‐Luther University Halle‐Wittenberg, Halle (Saale), Germany
Abstract:We estimated the effective population sizes (Ne) and tested for short‐term temporal demographic stability of populations of two Lake Malawi cichlids: Maylandia benetos, a micro‐endemic, and Maylandia zebra, a widespread species found across the lake. We sampled a total of 351 individuals, genotyped them at 13 microsatellite loci and sequenced their mitochondrial D‐loop to estimate genetic diversity, population structure, demographic history and effective population sizes. At the microsatellite loci, genetic diversity was high in all populations. Yet, genetic diversity was relatively low for the sequence data. Microsatellites yielded mean Ne estimates of 481 individuals (±99 SD) for M. benetos and between 597 (±106.3 SD) and 1524 (±483.9 SD) individuals for local populations of M. zebra. The microsatellite data indicated no deviations from mutation–drift equilibrium. Maylandia zebra was further found to be in migration–drift equilibrium. Temporal fluctuations in allele frequencies were limited across the sampling period for both species. Bayesian Skyline analyses suggested a recent expansion of M. zebra populations in line with lake‐level fluctuations, whereas the demographic history of M. benetos could only be estimated for the very recent past. Divergence time estimates placed the origin of M. benetos within the last 100 ka after the refilling of the lake and suggested that it split off the sympatric M. zebra population. Overall, our data indicate that micro‐endemics and populations in less favourable habitats have smaller Ne, indicating that drift may play an important role driving their divergence. Yet, despite small population sizes, high genetic variation can be maintained.
Keywords:Bayesian Skyline plots  biodiversity conservation  demographic history  drift  East Africa  effective population size  population genetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号