首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression, purification and characterization of arginase from Helicobacter pylori in its apo form
Authors:Zhang Jinyong  Zhang Xiaoli  Wu Chao  Lu Dongshui  Guo Gang  Mao Xuhu  Zhang Ying  Wang Da-Cheng  Li Defeng  Zou Quanming
Institution:Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China.
Abstract:Arginase, a manganese-dependent enzyme that widely distributed in almost all creatures, is a urea cycle enzyme that catalyzes the hydrolysis of L-arginine to generate L-ornithine and urea. Compared with the well-studied arginases from animals and yeast, only a few eubacterial arginases have been characterized, such as those from H. pylori and B. anthracis. However, these enzymes used for arginase activity assay were all expressed with LB medium, as low concentration of Mn(2+) was detectable in the medium, protein obtained were partially Mn(2+) bonded, which may affect the results of arginase activity assay. In the present study, H. pylori arginase (RocF) was expressed in a Mn(2+) and Co(2+) free minimal medium, the resulting protein was purified through affinity and gel filtration chromatography and the apo-form of RocF was confirmed by flame photometry analysis. Gel filtration indicates that the enzyme exists as monomer in solution, which was unique as compared with homologous enzymes. Arginase activity assay revealed that apo-RocF had an acidic pH optimum of 6.4 and exhibited metal preference of Co(2+)>Ni(2+)>Mn(2+). We also confirmed that heat-activation and reducing regents have significant impact on arginase activity of RocF, and inhibits S-(2-boronoethyl)-L-Cysteine (BEC) and Nω-hydroxy-nor-Arginine (nor-NOHA) inhibit the activity of RocF in a dose-dependent manner.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号