首页 | 本学科首页   官方微博 | 高级检索  
     


Decolorization kinetics of the azo dye Reactive Red 2 under methanogenic conditions: effect of long-term culture acclimation
Authors:M.?Inan Beydilli,Spyros?G.?Pavlostathis  author-information"  >  author-information__contact u-icon-before"  >  mailto:spyros.pavlostathis@ce.gatech.edu"   title="  spyros.pavlostathis@ce.gatech.edu"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA;(2) Present address: M. Inan Beydilli, CH2M Hill, Chicago, IL 60631, USA
Abstract:The biological decolorization of the textile azo dye Reactive Red 2 was investigated using a mixed, mesophilic methanogenic culture, which was developed with mixed liquor obtained from a mesophilic, municipal anaerobic digester and enriched by feeding a mixture of dextrin/peptone as well as media containing salts, trace metals and vitamins. Batch decolorization assays were conducted with the unacclimated methanogenic culture and dye decolorization kinetics were determined as a function of initial dye, biomass, and carbon source concentrations. Dye decolorization was inhibited at initial dye concentrations higher than 100 mg l-1 and decolorization kinetics were described based on the Haldane model. The effect of long-term culture exposure to the reactive dye on decolorization kinetics, culture acclimation, as well as possible dye mineralization was tested using two reactors fed weekly for two years with an initial dye concentration of 300 mg l-1 and a mixture of dextrin/peptone. The maximum dye decolorization rate after a 2-year acclimation at an initial dye concentration of 300 mg l-1 was more than 10-fold higher as compared to that obtained with the unacclimated culture. Aniline and the o-aminohydroxynaphthalene derivative resulting from the reductive azo bond cleavage of the dye were detected, but further transformation(s) leading to dye mineralization were not observed. Reactive Red 2 did not serve as the carbon and energy source for the mixed culture, and dye decolorization was sustained by the continuous addition of dextrin and peptone. Thus, biological decolorization of reactive azo dyes is feasible under conditions of low redox potential created and maintained in overall methanogenic systems, but supply of a biodegradable carbon source is necessary.
Keywords:biological decolorization  inhibition  kinetics  methanogenesis  reactive azo dyes  textiles
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号