首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Polyphenol amentoflavone affords neuroprotection against neonatal hypoxic-ischemic brain damage via multiple mechanisms
Authors:Shin Dong Hoon  Bae Young Chul  Kim-Han Jeong Sook  Lee Ji Hyun  Choi In Young  Son Kun Ho  Kang Sam Sik  Kim Won-Ki  Han Byung Hee
Institution:Department of Manufacturing Pharmacy and Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea.
Abstract:Flavonoids are naturally occurring polyphenolic compounds that have many biological properties, including antioxidative, anti-inflammatory and neuroprotective effects. Here, we report that amentoflavone significantly reduced cell death induced by staurosporine, etoposide and sodium nitroprusside in neuroblastoma SH-SY5Y cells. In post-natal day 7 rats, hypoxic-ischemic (H-I) brain damage induced by unilateral carotid ligation and hypoxia resulted in distinct features of neuronal cell death including apoptosis and necrosis. In this model, a systemic administration of amentoflavone (30 mg/kg) markedly reduced the H-I-induced brain tissue loss with a wide therapeutic time window up to 6 h after the onset of hypoxia. Amentoflavone blocked the activation of caspase 3, characteristic of apoptosis, and the proteolytic cleavage of its substrates following H-I injury. Amentoflavone also reduced the excitotoxic/necrotic cell death after H-I injury in vivo and after oxygen/glucose deprivation in mouse mixed cultures in vitro. Treatment of mouse microglial cells with amentoflavone resulted in a significant decrease in the lipopolysaccharide-induced production of nitric oxide and induction of inducible nitric oxide synthase and cyclo-oxygenase-2. Furthermore, amentoflavone decreased the inflammatory activation of microglia after H-I injury when assessed by the microglial-specific marker OX-42. These data demonstrate for the first time that amentoflavone strongly protects the neonatal brain from H-I injury by blocking multiple cellular events leading to brain damage.
Keywords:apoptosis  flavonoids  hypoxia  ischemia  necrosis  neuroprotection
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号