首页 | 本学科首页   官方微博 | 高级检索  
     


Depolarisation-Dependent Protein Phosphorylation and Dephosphorylation in Rat Cortical Synaptosomes Is Modulated by Calcium
Authors:Phillip J. Robinson  Peter R. Dunkley
Affiliation:The Neuroscience Group, Faculty of Medicine, The University of Newcastle, New South Wales, Australia
Abstract:The effect of calcium on protein phosphorylation was investigated using intact synaptosomes isolated from rat cerebral cortex and prelabelled with 32Pi. For nondepolarised synaptosomes a group of calcium-sensitive phosphoproteins were maximally labelled in the presence of 0.1 mM calcium. The phosphorylation of these proteins was slightly decreased in the presence of strontium and absent in the presence of barium, consistent with the decreased ability of these cations to activate calcium-stimulated protein kinases. Addition of calcium alone to synaptosomes prelabelled in its absence increased phosphorylation of a number of proteins. On depolarisation in the presence of calcium certain of the calcium-sensitive phosphoproteins were further increased in labelling above nondepolarised levels. These increases were maximal and most sustained after prelabelling at 0.1 mM calcium. On prolonged depolarisation at this calcium concentration a slow decrease in labelling was observed for most phosphoproteins, whereas a greater rate and extent of decrease occurred at higher calcium concentrations. At 2.5 mM calcium a rapid and then a subsequent slow dephosphorylation was observed, indicating two distinct phases of dephosphorylation. Of all the phosphoproteins normally stimulated by depolarisation, only phosphoprotein 59 did not exhibit the rapid phase of dephosphorylation at high calcium concentrations. Replacing calcium with strontium markedly decreased the extent of change observed on depolarisation whereas barium decreased phosphorylation changes even further. Taken together these data suggest that an influx of calcium into synaptosomes initially activates protein phosphorylation, but as the levels of intrasynaptosomal calcium rise protein dephosphorylation predominates. Other phosphoproteins were dephosphorylated immediately on depolarisation in the presence of calcium. The fine control of protein phosphorylation levels exerted by calcium supports the idea that the synaptosomal phosphoproteins could play a role in modulating events such as neurotransmitter release in the nerve terminal.
Keywords:Synaptosomes    Calcium    Protein phosphorylation    Depolarisation    Protein kinases    Protein phosphatases
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号