首页 | 本学科首页   官方微博 | 高级检索  
   检索      


From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish,Eigenmannia
Authors:Clifford H Keller  Walter Heiligenberg
Institution:(1) A-002, Neurobiology Unit, Scripps Institution of Oceanography, University of California, 92093 San Diego, La Jolla, California, USA
Abstract:Summary During their jamming avoidance response (JAR), weakly electric fish of the genusEigenmannia shift their electric organ discharge (EOD) frequency away from a similar EOD frequency of a neighboring fish. The behavioral rules and neural substrates for stimulus recognition and motor control of the JAR have been extensively studied (see review by Heiligenberg 1986). The diencephalic nucleus electrosensorius (nE) links sensory processing within the torus semicircularis and optic tectum with the mesencephalic prepacemaker nucleus which, in turn, modulates the medullary pacemaker nucleus and hence the EOD frequency. Two separate areas within the nE responsible for JAR-related EOD frequency rises and frequency falls, respectively, were identified by iontophoresis of the excitatory amino acid L-glutamate. Bilateral lesion of the areas causing EOD frequency rises resulted in elimination of JAR-related frequency rises above a baseline frequency obtained in the absence of a jamming stimulus. Similarly, bilateral lesion of the areas causing frequency falls resulted in a loss of JAR-related frequency falls below the baseline frequency. Whether these areas are also responsible for non-JAR-related frequency shifts is not known. The strength of response and spatial extent of the areas causing frequency shifts varied among fish and also varied in individual fish, reflecting the strength of JAR-related frequency shifts and the balance of activities in frequency-rise and frequency-fall areas. Local application of bicuculline-methiodide or GABA demonstrated a tonic inhibitory input to each area and suggests a reciprocal inhibitory interaction between the two ipsilateral areas, possibly accounting for much of the individual plasticity.The nE thus is a site for neuronal transformation from distributed, topographically organized processing within the laminated structures of the torus and tectum to discrete cell clusters which control antagonistic motor responses.Abbreviations EOD electric organ discharge - JAR jamming avoidance response - Df difference frequency between jamming signal and the fish's own EOD - nE nucleus electrosensorius - PPn prepacemaker nucleus
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号