首页 | 本学科首页   官方微博 | 高级检索  
     


Expression patterns of loricrin in various species and tissues
Authors:Daniel Hohl  Barbara Ruf Olano  Pierre A. de  Viragh   Marcel Huber  Carol J. Detrisac  Urs W. Schnyder  Dennis R. Roop
Affiliation:Laboratory of Skin Biology, Department of Dermatology. University Hospital of Lausanne, Switzerland;Laboratory of Skin Biology, Department of Dermatology, University Hospital of Zürich. Switzerland;Life Sciences Research, IIT Research Institute, Chicago, Illinois, USA;Departments of Cell Biology and Dermatology, Baylor College of Medicine, Houston, Texas, USA
Abstract:Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nɛ -(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4–hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号