首页 | 本学科首页   官方微博 | 高级检索  
     


In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae. 2. Reaction mechanism of aspartate transcarbamylase dissociated from carbamylphosphate synthetase by genetic alteration
Authors:M Belka?d  B Penverne  M Denis  G Hervé
Abstract:The reaction mechanism of Saccharomyces cerevisiae aspartate transcarbamylase was studied in permeabilized cells of a mutant in which this enzyme is not associated to carbamylphosphate synthetase. The results obtained indicate an ordered mechanism in which carbamylphosphate binds first, followed by aspartate, with dissociation of the products in the order phosphate then carbamylaspartate. Interestingly, this clear-cut mechanism differs from the more complex behavior shown by aspartate transcarbamylase when this enzyme is associated to carbamylphosphate synthetase in wild-type S. cerevisiae (B. Penverne and G. Hervé, Arch. Biochem. Biophys. (1983) 225, 562-575). This difference indicates that the association of the two enzymes within the multienzymatic complex alters the apparent kinetic properties of aspartate transcarbamylase. Such an enzyme-enzyme interaction might be related to the channeling of carbamylphosphate from one catalytic site to the other one.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号