首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium-induced lateral phase separations in phosphatidylcholine-phosphatidic acid mixtures. A Raman spectroscopic study
Authors:R Kouaouci  J R Silvius  I Graham  M Pézolet
Abstract:The effects of calcium ions on mixed membranes of dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidylcholine (DMPC) with either the PA or the PC component deuterated have been studied by Raman spectroscopy. The spectra of the pure components show that the acyl chains of hydrated DMPA bilayers are less tightly packed and have more trans bonds than those of DMPC. This behavior appears to be due to the particular arrangement of the polar head groups of DMPA for which the glycerol chain is oriented parallel to the bilayer surface. In agreement with the calorimetrically determined phase diagram Graham, I., Gagné, J., & Silvius, J. R. (1985) Biochemistry (preceding paper in this issue)], the Raman results show that, in the absence of calcium, DMPA and DMPC are completely miscible at an equimolar ratio but undergo extensive phase separation in the presence of excess calcium. DMPC in phase-separated DMPC-DMPA (Ca2+) mixtures has a conformation that is very similar to that of pure DMPC bilayers, but it is packed more tightly since, depending on the temperature, it is at least partly incorporated into either a solid solution in DMPA or a DMPA-Ca2+-rich "cochleate" phase. This latter shows the same characteristics as the cochleate phase of pure DMPA-Ca2+ which is highly ordered and does not give rise to a thermotropic transition between 5 and 100 degrees C. However, the cochleate phase in DMPA (Ca2+)-DMPC mixtures contains some 20 mol % of DMPC trapped in small domains. These clusters do not melt cooperatively but become as fluid as pure DMPC at 50 degrees C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号