首页 | 本学科首页   官方微博 | 高级检索  
     


Oligo-2'-fluoro-2'-deoxynucleotide N3'-->P5' phosphoramidates: synthesis and properties.
Authors:R G Schultz and S M Gryaznov
Abstract:Uniformly modified oligodeoxyribonucleotide N3'-->P5' phosphoramidates containing 2'-fluoro-2'-deoxy-pyrimidine nucleosides were synthesized using an efficient interphase amidite transfer reaction. The 3'-amino group of solid phase-supported 2'-fluoro-2'-deoxynucleoside was used as an acceptor and 5'-diisopropylamino phosphoramidite as a donor of a phosphoramidite group in the tetrazole-catalyzed exchange reaction. Subsequent oxidation with aqueous iodine resulted in formation of an internucleoside phosphoramidate diester. The prepared oligo-2'-fluoro-nucleotide N3'-->P5' phosphoramidates form extremely stable duplexes with complementary nucleic acids: relative to isosequential phosphodiester oligomers, the melting temperature Tm of their duplexes with DNA or RNA was increased approximately 4 or 5 degrees C per modification respectively. Moreover, these compounds are highly resistant to enzymatic hydrolysis by snake venom phosphodiesterase and they are 4-5 times more stable in acidic media (pH 2.2-5.3) than the parent oligo-2'-deoxynucleotide N3'-->P5' phosphoramidates. The described properties of the oligo-2'-fluoronucleotide N3'-->P5' phosphoramidates suggest that they may have good potential for diagnostic and antisense therapeutic applications.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号